Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 296: 154237, 2024 May.
Article in English | MEDLINE | ID: mdl-38583194

ABSTRACT

Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.


Subject(s)
Antioxidants , Selenium , Animals , Humans , Antioxidants/metabolism , Selenium/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Plants/metabolism
2.
J Agric Food Chem ; 69(6): 1806-1815, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33332135

ABSTRACT

The pericarp of longan (Dimocarpus longan Lour.) is rich in secondary metabolites and typically yellow-brown or gray-yellow in appearance. Here, we obtained a specific longan type, called red pericarp (RP) longan, which has a strong red pericarp. To understand the coloring mechanism of RP longan, metabolome and transcriptome data were used to analyze its secondary metabolites and molecular mechanism. From the results of liquid chromatography tandem mass spectrometry, 597 substances were identified in RP longan and 'Shixia' (SX) longan. Among these substances, 33 (mostly including flavonoids) were found in RP longan and 23 (mostly containing phenolic acids) were identified in SX longan. We identified five types of anthocyanins in longan pericarp, including three cyanidin derivatives, one delphinidin derivative, and one pelargonidin derivative. Three cyanidin derivatives, which contained cyanidin 3-O-glucoside, cyanidin 3-O-6″-malonyl-glucoside, and cyanidin O-syringic acid, were the primary components of anthocyanidins, and they only existed in RP longan. Delphinin 3-O-glucoside existed only in SX longan, and pelargonin O-rutinoside existed in RP and SX longan. However, their contents were extremely low. The structural genes F3H, F3'H, UFGT, and GST and the controlling genes containing MYB, bHLH, NAC, and MADS in the biosynthetic pathway of anthocyanin were significantly upregulated in RP longan. In summary, the strong red hue of RP longan is due to the accumulation of cyanidin derivatives in its pericarp, and the genes F3'H and F3'5'H may play an important role in selecting which component of anthocyanins will be synthesized. These results can provide scientific guidance for understanding and developing bioactive compounds from longan fruits.


Subject(s)
Metabolome , Sapindaceae , Anthocyanins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Sapindaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...